Вот, а я как-то пропустил, а сегодня слушаю лекцию и там заявляют, что создание AKS намекает на то, что BPP = P и тут я осознаю, что со студенческих лет мои знания сильно устарели.
just curious, what lecture sees such a hint? my intuitions on the topic are also way out of date, but I'd say that this hint is not much stronger than linear programing in P hinting that P=NP.
There were other examples, but in general primes was very famous problem that was BPP but not P, so when P solution was finally found, those that suspect BPP = P took it as a hint it may indeed be true. Of course, it's not a proof - it's just a kind of side note, and there are still BPP problems that don't have P solutions, but it is said that their number is decreasing, so there might be indeed time when no such problems would remain. Which also wouldn't be, strictly speaking, a proof that BPP = P but for all practical purposes it would be as if it were true.
А зачем проверять, если можно просто заглянуть, есть ли данное число в таблице простых чисел полученных с помощью многочлена, перечисляющего множество простых чисел (http://dxdy.ru/topic13827-45.html)?
Пожалуйста, разъясните, какой метод заполнения этой таблицы по возрастанию и без пропусков самый эффективный. Ничего кроме как взять натуральный ряд и удалять кратные 2, 3 и т. д. в голову не приходит.
no subject
no subject
no subject
my intuitions on the topic are also way out of date, but I'd say that this hint is not much stronger than linear programing in P hinting that P=NP.
no subject
no subject
thanks!
no subject
Don't remember the exact lecture there, but somewhere in Week 3.
no subject
no subject
no subject
no subject
no subject